

「I・S・D グラウチング」は、ネットワーク通信と情報処理技術を活かした ダムグラウト現場での新たな施工管理の手法を提案します。

<u> システム概要 - I・S・D グラウチング -</u>

- I nformation
 - ○屋外山間部ネットワーク構築技術で、建設現場内に安定したネットワーク環境を構築
 - 〇ネットワーク環境を利用した Ethernet 対応機材の活用とデータ通信で、現場内配線を省配線化
- S haring
 - ○ウェブサイトで施工情報は常にリアルタイムで共有(GMS Web)
 - 3D グラウチングマップでグラウチング結果の空間分布を他の構造データと共有
- (D) am-grouting
 - ○ネットワーク通信を活用した注入の自動・遠隔制御システムによって、注入工程の大部分を省力化
 - ○現場外からの注入制御(遠隔管理<mark>室の設置)によって、都市部で</mark>の作業人員確保<mark>と働</mark>き方の改革

239.8kg/m	Strakty m.
10.0st 2101=	
5.00m	5.00m
6.61Lu	7.78Lu
293.2kg/m	92.5kg/m
2023/07/12	2023/08/25
11.0st	11.0st
5.00m	5.00m
6.47Lu	7.81Lu
98.9kg/m	176.7kg/m
2023/07/13	2023/08/29
12.0st	12.0st
5.00m	
9.90Lu	
130.0kg/m	172.0kg/m
2023/07/14	2023/08/30
13.0st	13.0st 3回目
	5.00m
	6.32Lu
95.2kg/m	507.1kg/m
2023/07/15	2023/09/01
14.0st	
5.00m	
8.71Lu	
10.7kg/m	
2023/07/18	

, ,	注入制	ושוני
	10.0st	
	5.00m	
	6.26Lu	
	123.9kg/m	
2022/09/15	2023/10/26	
	11,061	11.0at 2 01=
	4.23Lu	4.39Lu
581.2kg/m 2022/09/16	348,5kg/mi 2023/10/31	282.5kg/m 2023/07/11
10.168 2 0	12 Ost	
2.50m	5.00m	12.0at 3 ⊞ 5.00m
	9.52Lu	
	24.5kg/m	725.8kg/m
2022/09/20	2023/11/01	2023/07/13
11.0st 3.00	13.0st	13.0st
14.24Lu		
1089.8kg/	22.5kg/m	93.9kg/m
2022/89/22	2023/11/03	2023/07/17
11.1st 3PH		14.0st
2.50m 88.60Lu		5.00m 9.53Lu
732.7kg/m		193.2kg/m
2022/09/27		2023/07/19

ij	6姓.	至りる	X旦/	7.681.0	5 (,	111711	ו דום ל
		2023/06/01		296.0kg/m 2023/10/11		2023/11/06	47.4kg/m 2022/11/05
	10.0st	10.081	10.00		1208	10.0at	& Set
	78:9kg/m 2023/09/20			11.4 Okg/m 2023/10/16			
		11.0st 5.00m			11.0st	11.0at 5.00m	10.0st 3l¤i⊟ 5.00m
	5.00m 0.48Lu			5.00m 1.71Lu			
		229:4kg/m 2023/05/05		5.3kg/m 2023/1017	69.5kg/m 2023/08/19	84.4kg/m 2023/11/08	749.3kg/m 2022/11/09
		12.0st		12.0st	12.0et	12.081	11.0st
	5.00m 10.00Lu	5.00m 1.17Lu		5.00m 2.80Lu	5.00m 0.73Lu	5.00m 0.27Lu	5.00m
	157.6kg/m 2023/09/22			16.6kg/m 2023/10/18	151.0kg/m 2023/08/21	42.0kg/m 2023/11/09	418.6kg/m 2022/11/14
	13.0st	13.0st 7 0 =		13.0st 2001=	13.0st	13.0st	12.0st 5回目
							2.50m
	11.81Lu 7.8kg/m 2023/09/26			11.25Lu 444.8kg/m 2023/10/20	16.96Lu 137.3kg/m 2023/08/22	15.11Lu 108.3kg/m 2023/11/10	1549.8kg/ 2022#1/15
	2020103120	14.0st		14.0st	14.0st 2 2 E	14.0st	12.1st 4回日
				5.00m			2.50m
				7.05Lu	12.33Lu		004 71
		161.6kg/m 2023/06/20		152.0kg/m 2023/10/21	407.1kg/m 2023/08/23	154.7kg/m 2023/11/13	924.7kg/m 2022/11/19

7.0kg/	
	/19
10.081	
2023/09	
	n
	ш
19.9kg	/m
2023/09	21
12.0st	
	u m
2023/09	22
	n
	u
3.4kg/	m
2023/09	/26
14.0st	
2023/09	/27

システムの活用例

▶どこでも、繋がる-

現場內圈外環境

- ・衛星通信を利用して山間部においても高速ネットワーク回線を構築
- ・現場内の長距離信号伝送には、指向性アンテナで通信品質を維持
- ・トンネル内においても、安定したWI-FI環境を構築
- ・ウェブカメラを活用して、現場内環境を常に監視
- ·Wi-Fi 無線 IP トランシーバーで、どこでも繋がる
- ・その他、Ethernet 対応機材を各所にて活用

リアルタイムの施工情報処理システムで

ウェブサイトで注入状況を共有

現場内の注入管理装置画面を閲覧

注入予定表と日報速報を閲覧

- 注入結果をリアルタイムで確認
- ・注入仕様の変更指示
- ・追加孔等の指示
- 日々の工事進捗の確認

インターネット (ウェブサイト) 担当者

都市部において注入を集中管理

▶ どこでも、制御できる -

グローバルネットワーク環境を活用した

歳隔地からの機器制御

ミキシングプラント グラウトポンプ

現場内のタッチパネル端末 (Ethernet 通信対応) で操作可能な状態

① 電現地の端末にアクセス

② ☞端末と同一画面を遠隔操作☞

現場内の通信環境の改善

従来の管理体制と課題

I) nformation

■ キャリア回線は圏外

- ・現場は山間部のため、圏外環境が多い
- ・トンネル内の施工では圏外環境となる
- ・現場内での連絡手段の必要性(連絡合図)

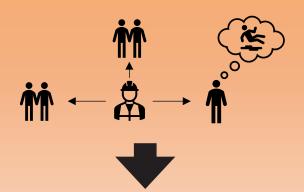
May Madhod 1

安定した現場内ネット回線構築のノウハウ それらを活用した機器通信・遠隔臨場

WiFi ネットワークを利用して、現場内のどこに居 ても連絡を取れ、各種検査についてはリモートで 対応可能な高品質通信環境を構築します。注入機 材の通信ラインに関しても、用途ごとに専用線を 敷設するのではなく、Lan 規格に統一化し、現場 内の省線化を実現しました。

現場内で長距離の Lan ケーブル敷設が困 難な場合、指向性アンテナを用いることに よって、遠方にネットワーク環境を中継する ことが可能。屋外で 2.5km 以上の無線中継 実績が有り。

▶ Mesh Wi-Fi テクノロジ


従来のアクセスポイントと異なり、網目(メッシュ)のようにアクセス ポイントが繋がり合うシステムを採用。これにより、等間隔に配置 された機材同士は互いの電波到達エリアの重複領域を補完し合い、 巨大な無線ネットワーク網が構築される。接続デバイスは最適な通 信経路を自動で選択し、接続ポイントの切り替えはシームレスに行 われる。これにより、信頼度の高いWi-Fi環境の構築が可能となった。

たな通信ツールを導入。従来のトランシーバー とも異なり Wi-Fi 通信を利用するため、トンネル 内においても利用が可能。また現場外遠隔地 においても、独自チャンネルを用いて通信を行 うため、高品質な通話が可能。

■ 現場状況把握の必要性

- ・遠隔注入の際の、安全・品質面の担保
- ・1人作業の際の、安全管理上の問題
- ・施工が複数箇所になる場合の全体状況の把握

New Method 2

ネットワークカメラを利用した 現場環境の一括監視

内の状況を確認することができます。遠隔注入の際 には、オペレーターは常にカメラで目視を行いなが ら、注入時の安全・品質を確保します。また、AI カメラやセンサーを用いた危険エリアへの人物立ち 入り警告機能なども備えています。

従来の管理体制と課題

■ 注入管理の課題

- ・紙面やホワイトボードを利用した予定管理
- ・施工状況のリアルタイムでの把握
- ・顧客との施工状況・結果の共有方法

New Method 3

GMS (Grout Management System) を利用した Web ベースの統合的な注入管理

注入に関する状況・結果などの情報や、日報出力・ 解析ツールは、全て Windows で動作する GMS ソフトウェアに集積・統合されます。これらの情 報は、GMS ウェブでいつでも確認できるので、顧 客からもリアルタイムで施工状況を把握すること ができます。

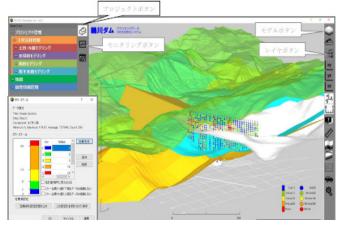
RM	IR			TL86	泌酸	Confi		BB	型終st	BATERE	SER	BRI	福祉
9							0.0	0					
10							0.0	0					
	3-5>	L21	K1	P039	PR		5.0	0	7.0	27.28 ~ 30.70			ReBo~
	3-97	L22	K1	P040	PEL		3.0	0	5.0	18.77 ~ 23.77	姓入中		
	3-7>	L23	К1	P041	P?L		2.0	5	20.0	13.38 ~ 18.38	姓入完了	11/16 13:01	州走量中断4回 指示 待ち
	3-97	1.24	K1	P042	PR		1.0	5	20.0	10.40 ~ 15.40	注入準備中		規定量中斯4回
	3-9>	L25	IC1	1001	1		0.0	0	6.0	0.00 ~ 2.00			
	3-9>	126	K1	P044	PIL		2.0	.5	6.0	13.08 ~ 18.08	注入完了	11/06 16:43	規定量中斯4回 担 示待ち
	3-7>	L27	K1	1001	1		0.0	0	6.0	0.00 ~ 2.00	ボーリング準備中		
	á-9>	L27	К1	P046	PIL		2.0	G	20.1	13.17 ~ 18.17	水押・透水試験準備 中		規定量中新6回 指示 待ち
	3-7>	L28	K1	1001	1		1.0	0	6.0	12.84 ~ 17.84	ボーリング準備中		
	3-9>	L29	К1	1001	- 1		0.0	0	6.0	0.00 ~ 2.00	水押・透水試験準備 中		
	3-7>	L31	K1	1001	1		0.0	0	6.0	0.00 ~ 2.00	ボーリング中		
	3-7>	L31	K1	P050	PR		5.0	0	6.0	29.51 ~ 34.13	注入中		
	カーテン(5先行日の)	L16	KO	P034	PR.		3.0	0	7.0	36.10 ~ 41.10	ホーリング準備中		

▶ GMS ウェブ機能◀

流量計の注入画面をリアルタイム で確認できる他、施工予定表や2 次元の施工状況マップを表示する ことが可能。その他にもファイルの アップロード機能や、日々のグラウ ト管理日報なども施工マップをクリッ クすると確認することができる。ネッ ト環境があれば、どこからでも最新 のグラウチング情報にアクセスする ことが可能となった。

不可視領域での施工管理

- ・注入結果は視覚的に分かりづらい
- ・注入結果と他の情報(構築物・地質情報) との対比がしづらい



New Method 4

3D グラウチングモデル (octas) を 利用した注入結果の可視化

現場内の構造物・地質情報などの 3D CAD データ と注入結果を重ね合わせて表示することができま す。注入結果の「見える」化に大きく貢献すると共 に、各種解析作業や既存構造物・観測計器との位置 関係の把握を容易なものとし、より確実な地下情報

GMS から出力されるデータを取り込んで、注入結果を 3D で表示することができる。ルジオン値や単位 注入セメント量のほか、様々な注入情報を 3D マップ上に落とし込むことができる。また、構造物など の 3D CAD データは幾つでも取り込むことができ、用途に合わせた使用が可能。

注入の自動・遠隔管理

従来の管理体制と課題

(D) am-grouting

■ 有人稼働の管理室と注入プラント

- ・管理室での注入流量・圧力管理
- ・注入プラントでのポンプ・ミキサーの運転管理
- ・自動ミキシングプラントの運転管理
- ・給水・排水の管理

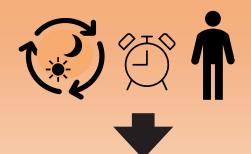
Mary Mathod 5

流量計・ポンプ・ミキサーなどの 注入機材の遠隔・自動制御

現場内に構築したインターネット環境を活用して、 各種機材に遠隔地から接続・制御することを可能 としました。従来までの作業行程の自動化も実装 しており、作業人件費の削減や注入作業の効率化 に大きく貢献します。

▶レーダー式ミキサー残量計◀ -ダー式の液面反射によってミキサー内

▶遠隔操作対応 注入プラント制御装置◀ タッチパネル端末より、集中的にグラウトポンプの回転数制御、 ミキサーの撹拌・給排水制御、溶液残量の確認が可能となる。



グラウトポンプ横に設置するユニット式のバルブボッ クス(左)と、リターンホース廃棄切り替えバルブ (上)。遠隔地から操作が可能であり、注入プラント における作業人員の削減に大きく貢献する。

就業規則の厳粛化

- ・昼夜施工が一般的なダムグラウト工事
- ・残業時間短縮の必要性
- ・働き方改革の推進(就業環境等)
- ・担い手の不足

New Method 6

現場外遠隔地からの注入管理 建設現場の働き方の改革

遠隔操作が可能な設備を活用して、現場外の遠隔地 に「集中管理室」を設置し、統括的な注入管理を行 います。これらの仕組みは、働き方改革に順応した 施工体制の確立・担い手不足解消を目的とした都市 部での作業人員確保などに大きく寄与します。

▶遠隔注入管理室◀

各種注入機材をリモート操作できる環境を遠 隔地に設置。PC 画面より操作が可能となる。 各種機器の情報は一元的に管理され、遠隔 ペレーターは Web カメラを確認しながら注 入作業を行う。